Convergence of a Hybrid Scheme for the Elliptic Monge-ampère Equation
نویسنده
چکیده
We prove the convergence of a hybrid discretization to the viscosity solution of the elliptic Monge-Ampère equation. The hybrid discretization uses a standard finite difference discretization in parts of the computational domain where the solution is expected to be smooth and a monotone scheme elsewhere. A motivation for the hybrid discretization is the lack of an appropriate Newton solver for the standard finite difference discretization on the whole domain.
منابع مشابه
Standard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Mixed Methods
We prove a convergence result for a mixed finite element method for the Monge-Ampère equation to its weak solution in the sense of Aleksandrov. The unknowns in the formulation are the scalar variable and the Hessian matrix.
متن کاملStandard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Aleksandrov Solutions
We prove a convergence result for a natural discretization of the Dirichlet problem of the elliptic Monge-Ampère equation using finite dimensional spaces of piecewise polynomial C functions. Discretizations of the type considered in this paper have been previously analyzed in the case the equation has a smooth solution and numerous numerical evidence of convergence were given in the case of non...
متن کاملWide Stencil Finite Difference Schemes for the Elliptic Monge-ampère Equation and Functions of the Eigenvalues of the Hessian
Certain fully nonlinear elliptic Partial Differential Equations can be written as functions of the eigenvalues of the Hessian. These include: the Monge-Ampère equation, Pucci’s Maximal and Minimal equations, and the equation for the convex envelope. In this article we build convergent monotone finite difference schemes for the aforementioned equations. Numerical results are presented.
متن کاملQuadratic Mixed Finite Element Approximations of the Monge-ampère Equation in 2d
We give error estimates for a mixed finite element approximation of the two-dimensional elliptic Monge-Ampère equation with the unknowns approximated by Lagrange finite elements of degree two. The variables in the formulation are the scalar variable and the Hessian matrix.
متن کاملOn the Integrability of a Class of Monge-Ampère Equations
We give the Lax representations for for the elliptic, hyperbolic and homogeneous second order Monge-Ampère equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Mong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015